Advanced LLM Model Optimization: Quantization, Pruning, Distillation
Advanced LLM Model Optimization
Section titled “Advanced LLM Model Optimization”Quantization
Section titled “Quantization”8-bit Quantization
Section titled “8-bit Quantization”from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0)
model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", quantization_config=quantization_config, device_map="auto")
# 2x memory reduction, minimal quality loss4-bit Quantization
Section titled “4-bit Quantization”quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4")
# 4x memory reductionKnowledge Distillation
Section titled “Knowledge Distillation”from transformers import Trainer, TrainingArguments
# Teacher model (large)teacher = AutoModelForCausalLM.from_pretrained("gpt-3.5-turbo")
# Student model (small)student = AutoModelForCausalLM.from_pretrained("gpt-2")
# Distillation lossdef distillation_loss(student_logits, teacher_logits, labels, temperature=2.0): loss_ce = F.cross_entropy(student_logits, labels) loss_kd = F.kl_div( F.log_softmax(student_logits / temperature, dim=-1), F.softmax(teacher_logits / temperature, dim=-1), reduction='batchmean' ) * (temperature ** 2) return 0.5 * loss_ce + 0.5 * loss_kdModel Pruning
Section titled “Model Pruning”import torch.nn.utils.prune as prune
def prune_model(model, amount=0.3): for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear): prune.l1_unstructured(module, name='weight', amount=amount)
# Remove pruning reparameterization for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear): prune.remove(module, 'weight')Inference Optimization
Section titled “Inference Optimization”Flash Attention
Section titled “Flash Attention”model = AutoModelForCausalLM.from_pretrained( "model-name", torch_dtype=torch.float16, attn_implementation="flash_attention_2")vLLM for Serving
Section titled “vLLM for Serving”from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Llama-2-7b-hf")sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
outputs = llm.generate(prompts, sampling_params)# 10-20x faster inferenceBest Practices
Section titled “Best Practices”✅ Benchmark before/after ✅ Test quality metrics ✅ Profile memory usage ✅ Monitor latency ✅ Consider accuracy tradeoffs
Found an issue? Open an issue!