Skip to content

Advanced LLM Model Optimization: Quantization, Pruning, Distillation

from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=quantization_config,
device_map="auto"
)
# 2x memory reduction, minimal quality loss
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4"
)
# 4x memory reduction
from transformers import Trainer, TrainingArguments
# Teacher model (large)
teacher = AutoModelForCausalLM.from_pretrained("gpt-3.5-turbo")
# Student model (small)
student = AutoModelForCausalLM.from_pretrained("gpt-2")
# Distillation loss
def distillation_loss(student_logits, teacher_logits, labels, temperature=2.0):
loss_ce = F.cross_entropy(student_logits, labels)
loss_kd = F.kl_div(
F.log_softmax(student_logits / temperature, dim=-1),
F.softmax(teacher_logits / temperature, dim=-1),
reduction='batchmean'
) * (temperature ** 2)
return 0.5 * loss_ce + 0.5 * loss_kd
import torch.nn.utils.prune as prune
def prune_model(model, amount=0.3):
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=amount)
# Remove pruning reparameterization
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.remove(module, 'weight')
model = AutoModelForCausalLM.from_pretrained(
"model-name",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
)
from vllm import LLM, SamplingParams
llm = LLM(model="meta-llama/Llama-2-7b-hf")
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
outputs = llm.generate(prompts, sampling_params)
# 10-20x faster inference

✅ Benchmark before/after ✅ Test quality metrics ✅ Profile memory usage ✅ Monitor latency ✅ Consider accuracy tradeoffs


Found an issue? Open an issue!