Developer Guide Template
[Guide Title - Be Specific]
Section titled “[Guide Title - Be Specific]”Overview
Section titled “Overview”What you’ll build: [Describe the end result]
Use cases: [When would someone use this?]
Time to complete: [Realistic estimate]
Prerequisites
Section titled “Prerequisites”Required knowledge:
- [e.g., Python 3.9+]
- [e.g., Understanding of async/await patterns]
- [e.g., Familiarity with REST APIs]
Required accounts/tools:
- [e.g., OpenAI API key]
- [e.g., Pinecone account (free tier works)]
- [e.g., Git and a code editor]
Optional but helpful:
- [e.g., Docker knowledge for containerization]
- [e.g., Experience with LangChain]
Architecture Overview
Section titled “Architecture Overview”[Component 1] → [Component 2] → [Component 3] ↓ ↓ ↓[Data Flow Description]Key components:
- [Component 1]: [What it does]
- [Component 2]: [What it does]
- [Component 3]: [What it does]
Environment Setup
Section titled “Environment Setup”Install Dependencies
Section titled “Install Dependencies”# Create virtual environmentpython -m venv venvsource venv/bin/activate # On Windows: venv\Scripts\activate
# Install packagespip install langchain openai pinecone-client tiktokenConfiguration
Section titled “Configuration”Create a .env file:
OPENAI_API_KEY=your-openai-key-herePINECONE_API_KEY=your-pinecone-key-herePINECONE_ENVIRONMENT=your-environmentSecurity note: Never commit .env files to version control. Add to .gitignore:
.envvenv/__pycache__/Implementation
Section titled “Implementation”Step 1: [First Major Step]
Section titled “Step 1: [First Major Step]”Goal: [What this step accomplishes]
# Import necessary modulesfrom langchain.embeddings import OpenAIEmbeddingsfrom langchain.vectorstores import Pineconeimport osfrom dotenv import load_dotenv
# Load environment variablesload_dotenv()
# Initialize embeddingsembeddings = OpenAIEmbeddings( model="text-embedding-3-small", openai_api_key=os.getenv("OPENAI_API_KEY"))Why this works: [Explain the technical reasoning]
Common issues:
- Problem: [Common error]
- Solution: [How to fix it]
Step 2: [Second Major Step]
Section titled “Step 2: [Second Major Step]”Goal: [What this step accomplishes]
import pinecone
# Initialize Pineconepinecone.init( api_key=os.getenv("PINECONE_API_KEY"), environment=os.getenv("PINECONE_ENVIRONMENT"))
# Create or connect to indexindex_name = "my-rag-index"if index_name not in pinecone.list_indexes(): pinecone.create_index( name=index_name, dimension=1536, # OpenAI embedding dimension metric="cosine" )
# Initialize vector storevectorstore = Pinecone.from_existing_index( index_name=index_name, embedding=embeddings)Performance considerations:
- [e.g., Cosine similarity is optimal for OpenAI embeddings]
- [e.g., Dimension must match embedding model output]
Step 3: [Continue with remaining steps]
Section titled “Step 3: [Continue with remaining steps]”[Add as many steps as needed to complete the implementation]
Testing
Section titled “Testing”Unit Tests
Section titled “Unit Tests”import pytestfrom your_module import your_function
def test_embedding_generation(): """Test that embeddings are generated correctly""" text = "Test document" result = your_function(text) assert len(result) == 1536 # OpenAI embedding dimension assert all(isinstance(x, float) for x in result)
def test_retrieval(): """Test that similar documents are retrieved""" query = "test query" results = vectorstore.similarity_search(query, k=3) assert len(results) <= 3 assert all(hasattr(doc, 'page_content') for doc in results)Integration Testing
Section titled “Integration Testing”def test_full_pipeline(): """Test the complete RAG pipeline""" # Add documents docs = ["Document 1", "Document 2", "Document 3"] vectorstore.add_texts(docs)
# Query query = "test query" results = rag_chain.run(query)
# Verify assert results is not None assert len(results) > 0Run tests:
pytest tests/ -vOptimization
Section titled “Optimization”Performance Tuning
Section titled “Performance Tuning”Embedding optimization:
- Use
text-embedding-3-smallfor cost/performance balance - Batch embeddings for large document sets
- Cache frequently used embeddings
Vector store optimization:
- Set appropriate
kvalue for retrieval (3-5 typically optimal) - Use metadata filtering to narrow search space
- Consider approximate nearest neighbor (ANN) for large datasets
Cost Optimization
Section titled “Cost Optimization”Estimated costs (as of 2025):
- Embeddings: ~$0.02 per 1M tokens
- LLM calls: Varies by model ($0.50-$15 per 1M tokens)
- Vector storage: ~$0.10 per 100k vectors/month
Cost-saving strategies:
# Cache embeddingsfrom langchain.cache import InMemoryCachelangchain.llm_cache = InMemoryCache()
# Use cheaper models for simple queriesfrom langchain.llms import OpenAIllm = OpenAI(model="gpt-3.5-turbo") # vs gpt-4Deployment
Section titled “Deployment”Docker Container
Section titled “Docker Container”# DockerfileFROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["python", "main.py"]Build and run:
docker build -t my-rag-app .docker run --env-file .env my-rag-appProduction Considerations
Section titled “Production Considerations”Monitoring:
- Track API latency and error rates
- Monitor token usage for cost control
- Set up alerts for API failures
Security:
- Rotate API keys regularly
- Use environment variables, never hardcode keys
- Implement rate limiting
- Validate and sanitize user inputs
Scalability:
- Use async operations for concurrent requests
- Implement caching layer (Redis/Memcached)
- Consider serverless deployment (AWS Lambda, Cloud Run)
Troubleshooting
Section titled “Troubleshooting”Common Errors
Section titled “Common Errors”Error: RateLimitError: Rate limit exceeded
# Solution: Implement exponential backoffimport timefrom openai.error import RateLimitError
def call_with_retry(func, max_retries=3): for attempt in range(max_retries): try: return func() except RateLimitError: if attempt < max_retries - 1: time.sleep(2 ** attempt) else: raiseError: InvalidDimensionError: Vector dimension mismatch
- Cause: Embedding model output doesn’t match index dimension
- Solution: Verify index dimension matches model (1536 for
text-embedding-3-small)
Error: No results returned from similarity search
- Cause: No documents in vector store or query too specific
- Solution: Verify documents were added; try broader query terms
Next Steps
Section titled “Next Steps”Enhancements to consider:
- Add conversation memory for multi-turn interactions
- Implement semantic caching to reduce API calls
- Add metadata filtering for more precise retrieval
- Create a web interface with Streamlit or FastAPI
- Add observability with LangSmith or similar
Related guides:
- [Link to related developer guide]
- [Link to another relevant guide]
Additional Resources
Section titled “Additional Resources”Official documentation:
Example repositories:
- [Link to GitHub repo with complete code]
- [Link to related example]
Community:
Found an issue with this guide? Open an issue or submit a PR!