AI-Powered Data Pipelines: ETL with Intelligence
AI-Powered Data Pipelines
Section titled “AI-Powered Data Pipelines”Traditional ETL vs AI-Enhanced
Section titled “Traditional ETL vs AI-Enhanced”Traditional ETL:
Extract → Transform (rules) → LoadAI-Enhanced ETL:
Extract → AI Clean/Classify → AI Enrich → Transform → LoadData Cleaning with AI
Section titled “Data Cleaning with AI”def ai_clean_address(raw_address): prompt = f"""Clean and standardize this address: Input: {raw_address}
Output format: {{ "street": "...", "city": "...", "state": "...", "zip": "...", "country": "..." }}"""
response = client.chat.completions.create( model="gpt-4", messages=[{"role": "user", "content": prompt}], response_format={"type": "json_object"} )
return json.loads(response.choices[0].message.content)Data Classification
Section titled “Data Classification”def classify_text(text, categories): prompt = f"""Classify this text into one category: Categories: {', '.join(categories)} Text: {text}
Return only the category name."""
response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}] )
return response.choices[0].message.content.strip()
# Batch processingdef classify_batch(texts, categories): results = [] for i in range(0, len(texts), 20): # Batch of 20 batch = texts[i:i+20] # Process batch... results.extend(batch_results) return resultsData Enrichment Pipeline
Section titled “Data Enrichment Pipeline”import pandas as pd
class AIDataEnricher: def __init__(self): self.client = OpenAI()
def enrich_company_data(self, df): """Enrich company dataframe with AI"""
# 1. Standardize names df['company_clean'] = df['company'].apply(self.clean_company_name)
# 2. Infer industry df['industry'] = df['company_clean'].apply(self.infer_industry)
# 3. Estimate size df['size_estimate'] = df.apply(self.estimate_company_size, axis=1)
return df
def clean_company_name(self, name): # Remove LLC, Inc, etc. prompt = f"Clean company name: {name}" return self.call_llm(prompt)
def infer_industry(self, company): prompt = f"What industry is {company} in? One word answer." return self.call_llm(prompt)
def estimate_company_size(self, row): prompt = f"""Estimate employee count category: Company: {row['company_clean']} Industry: {row['industry']}
Options: 1-10, 11-50, 51-200, 201-500, 500+""" return self.call_llm(prompt)Airflow + AI Pipeline
Section titled “Airflow + AI Pipeline”from airflow import DAGfrom airflow.operators.python import PythonOperatorfrom datetime import datetime
def extract_data(**context): # Extract from source data = fetch_from_api() context['ti'].xcom_push(key='raw_data', value=data)
def ai_clean_data(**context): data = context['ti'].xcom_pull(key='raw_data')
# AI cleaning cleaned = [] for record in data: cleaned_record = ai_clean_record(record) cleaned.append(cleaned_record)
context['ti'].xcom_push(key='cleaned_data', value=cleaned)
def ai_enrich_data(**context): data = context['ti'].xcom_pull(key='cleaned_data')
# AI enrichment enriched = [] for record in data: enriched_record = ai_enrich_record(record) enriched.append(enriched_record)
context['ti'].xcom_push(key='enriched_data', value=enriched)
def load_data(**context): data = context['ti'].xcom_pull(key='enriched_data') save_to_database(data)
# DAG definitiondag = DAG( 'ai_data_pipeline', start_date=datetime(2024, 1, 1), schedule_interval='@daily')
extract = PythonOperator(task_id='extract', python_callable=extract_data, dag=dag)clean = PythonOperator(task_id='clean', python_callable=ai_clean_data, dag=dag)enrich = PythonOperator(task_id='enrich', python_callable=ai_enrich_data, dag=dag)load = PythonOperator(task_id='load', python_callable=load_data, dag=dag)
extract >> clean >> enrich >> loadReal-Time Streaming Pipeline
Section titled “Real-Time Streaming Pipeline”from kafka import KafkaConsumer, KafkaProducerimport json
consumer = KafkaConsumer('raw_events', bootstrap_servers=['localhost:9092'])producer = KafkaProducer(bootstrap_servers=['localhost:9092'])
for message in consumer: event = json.loads(message.value)
# AI processing enriched_event = { **event, 'sentiment': analyze_sentiment(event['text']), 'category': classify_event(event), 'priority': calculate_priority(event) }
# Publish enriched event producer.send('enriched_events', json.dumps(enriched_event).encode())Cost Optimization
Section titled “Cost Optimization”class SmartCacheETL: def __init__(self): self.cache = {}
def process_with_cache(self, data): results = []
for item in data: # Check cache cache_key = hash(item['key_field'])
if cache_key in self.cache: result = self.cache[cache_key] else: # AI processing (expensive) result = ai_process(item) self.cache[cache_key] = result
results.append(result)
return resultsFound an issue? Open an issue!