Skip to content

AI-Powered Data Pipelines: ETL with Intelligence

Traditional ETL:

Extract → Transform (rules) → Load

AI-Enhanced ETL:

Extract → AI Clean/Classify → AI Enrich → Transform → Load
def ai_clean_address(raw_address):
prompt = f"""Clean and standardize this address:
Input: {raw_address}
Output format:
{{
"street": "...",
"city": "...",
"state": "...",
"zip": "...",
"country": "..."
}}"""
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
def classify_text(text, categories):
prompt = f"""Classify this text into one category:
Categories: {', '.join(categories)}
Text: {text}
Return only the category name."""
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content.strip()
# Batch processing
def classify_batch(texts, categories):
results = []
for i in range(0, len(texts), 20): # Batch of 20
batch = texts[i:i+20]
# Process batch...
results.extend(batch_results)
return results
import pandas as pd
class AIDataEnricher:
def __init__(self):
self.client = OpenAI()
def enrich_company_data(self, df):
"""Enrich company dataframe with AI"""
# 1. Standardize names
df['company_clean'] = df['company'].apply(self.clean_company_name)
# 2. Infer industry
df['industry'] = df['company_clean'].apply(self.infer_industry)
# 3. Estimate size
df['size_estimate'] = df.apply(self.estimate_company_size, axis=1)
return df
def clean_company_name(self, name):
# Remove LLC, Inc, etc.
prompt = f"Clean company name: {name}"
return self.call_llm(prompt)
def infer_industry(self, company):
prompt = f"What industry is {company} in? One word answer."
return self.call_llm(prompt)
def estimate_company_size(self, row):
prompt = f"""Estimate employee count category:
Company: {row['company_clean']}
Industry: {row['industry']}
Options: 1-10, 11-50, 51-200, 201-500, 500+"""
return self.call_llm(prompt)
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime
def extract_data(**context):
# Extract from source
data = fetch_from_api()
context['ti'].xcom_push(key='raw_data', value=data)
def ai_clean_data(**context):
data = context['ti'].xcom_pull(key='raw_data')
# AI cleaning
cleaned = []
for record in data:
cleaned_record = ai_clean_record(record)
cleaned.append(cleaned_record)
context['ti'].xcom_push(key='cleaned_data', value=cleaned)
def ai_enrich_data(**context):
data = context['ti'].xcom_pull(key='cleaned_data')
# AI enrichment
enriched = []
for record in data:
enriched_record = ai_enrich_record(record)
enriched.append(enriched_record)
context['ti'].xcom_push(key='enriched_data', value=enriched)
def load_data(**context):
data = context['ti'].xcom_pull(key='enriched_data')
save_to_database(data)
# DAG definition
dag = DAG(
'ai_data_pipeline',
start_date=datetime(2024, 1, 1),
schedule_interval='@daily'
)
extract = PythonOperator(task_id='extract', python_callable=extract_data, dag=dag)
clean = PythonOperator(task_id='clean', python_callable=ai_clean_data, dag=dag)
enrich = PythonOperator(task_id='enrich', python_callable=ai_enrich_data, dag=dag)
load = PythonOperator(task_id='load', python_callable=load_data, dag=dag)
extract >> clean >> enrich >> load
from kafka import KafkaConsumer, KafkaProducer
import json
consumer = KafkaConsumer('raw_events', bootstrap_servers=['localhost:9092'])
producer = KafkaProducer(bootstrap_servers=['localhost:9092'])
for message in consumer:
event = json.loads(message.value)
# AI processing
enriched_event = {
**event,
'sentiment': analyze_sentiment(event['text']),
'category': classify_event(event),
'priority': calculate_priority(event)
}
# Publish enriched event
producer.send('enriched_events', json.dumps(enriched_event).encode())
class SmartCacheETL:
def __init__(self):
self.cache = {}
def process_with_cache(self, data):
results = []
for item in data:
# Check cache
cache_key = hash(item['key_field'])
if cache_key in self.cache:
result = self.cache[cache_key]
else:
# AI processing (expensive)
result = ai_process(item)
self.cache[cache_key] = result
results.append(result)
return results

Found an issue? Open an issue!